skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shell, Michael"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A gate-tunable plasmonic optical filter incorporating a sub- wavelength patterned metal–insulator–metal metasurface heterostructure is proposed. An additional thin transparent conducting oxide (TCO) layer is embedded in the insulator layer to form a double metal–oxide-semiconductor configu- ration. Heavily n-doped indium tin oxide (ITO) is em- ployed as the TCO material, whose optical property can be electrically tuned by the formation of a thin active ep- silon-near-zero layer at the ITO–oxide interfaces. Full-wave electromagnetic simulations show that amplitude modula- tion and shift of transmission peak are achievable with 3–5 V applied bias, depending on the application. Moreover, the modulation strength and transmission peak shift increase with a thinner ITO layer. This work is an essential step toward a realization of next-generation compact photonic/ plasmonic integrated devices. 
    more » « less